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Abstract
We posit that user behavior during natural viewing of im-

ages contains an abundance of information about the con-
tent of images as well as information related to user intent
and user defined content importance. In this paper, we con-
duct experiments to better understand the relationship be-
tween images, the eye movements people make while view-
ing images, and how people construct natural language to
describe images. We explore these relationships in the con-
text of two commonly used computer vision datasets. We
then further relate human cues with outputs of current vi-
sual recognition systems and demonstrate prototype appli-
cations for gaze-enabled detection and annotation.

1. Introduction
Every day we consume a deluge of visual information

by looking at images and video on the web and more gener-
ally looking at the visual world around us in our daily lives.
In addition, the number of cameras that could conceivably
watch us back is increasing greatly. Whether it is webcams
on laptops, or front-facing cell phone cameras, or Google
Glass, the media that we use to access imagery increasingly
has the potential to observe our viewing behavior. This cre-
ates the unprecedented opportunity to harness these devices
and use information about eye, head, and body movements
to inform intelligent systems about the content that we find
interesting and the tasks that we are trying to perform. This
is particularly true in the case of gaze behavior, which pro-
vides direct insight into a person’s interests and intent.

We envision a day when reliable eye tracking can be
performed using standard front facing cameras, making it
possible for visual imagery to be tagged with individual-
ized interpretations of content, each a unique “story” sim-
ply through the act of a person viewing their favorite images
and videos. In this paper we provide a glimpse into this
exciting future by analyzing how humans interact with vi-
sual imagery in the context of object detection, and how this
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Figure 1: Left: baseline detection results including correct
detections (green) and incorrect detections (blue). Right:
gaze-enabled detection results with fixations (yellow). Bot-
tom: objects described by people and detected objects from
each method (green - correct, blue - incorrect).

symbiotic relationship might be exploited to better analyze
and index content that people find important. Understand-
ing how humans view and interpret images will lead to new
methods to design, train, evaluate, or augment computer vi-
sion systems for improved image understanding.

1.1. Visual Recognition and Detection
In computer vision, visual recognition algorithms are

making significant progress. Recent advances have started
to look at problems of recognition at a human scale, classi-
fying or localizing thousands of object categories with rea-
sonable accuracy [19, 24, 5, 6, 18]. However, despite rapid
advances in methods for object detection and recognition in
images [11, 5], they are still far from perfect. As evidenced
in Figure 1, running object detectors (20 deformable part
models [12] with default thresholds) on an image, still pro-
duces unsatisfactory results. Detectors still produce noisy
predictions. In addition, even if the detectors were com-
pletely accurate, they would produce an indiscriminate la-
beling of all objects in an image. For some applications,
such as image retrieval, a more human-centric annotation
of the most important content might be desired.

1



1.2. Information from Gaze

It has long been known that eye movements are not di-
rectly determined by an image, but are also influenced by
task [33]. The clearest examples of this come from the ex-
tensive literature on eye movements during visual search
[8, 21, 34, 35]; specifying different targets yields different
patterns of eye movements even for the same image. How-
ever, clear relationships also exist between the properties of
an image and the eye movements that people make during
free viewing. For example, when presented with a complex
scene, people overwhelmingly choose to direct their initial
fixations toward the center of the image [27], probably in
an attempt to maximize extraction of information from the
scene [27]. Figure/ground relationships play a role as well;
people prefer to look at objects even when the background
is made more relevant to the task [22]. All things being
equal, eye movements also tend to be directed to corners
and regions of high feature density [20, 29], sudden onsets
[30, 31], object motion [14, 15], and regions of brightness,
texture, and color contrast [16, 17, 23]. These latter influ-
ences can all be considered saliency factors affecting object
importance. The focus of our experiments is on less well
explored semantic factors – how categories of objects or
events might influence gaze [9] and how we can use gaze to
predict semantic categories.

Eye movements can inform image understanding in two
different but complementary ways. First, they can be used
to indicate the relative importance of content in an image by
providing a measure of how a person’s attention was spa-
tially and temporally distributed. Second, the patterns of
saccades and fixations made during image viewing might
be used as a direct indication of content information. To the
extent that gaze is drawn to oddities and inconsistencies in
a scene [28], fixations might also serve to predict unusual
events [1].

1.3. Human-Computer Collaboration

In this paper, we explore the potential for combining
human and computational inputs into integrated collabo-
rative systems for image understanding. There are many
recognition tasks that could benefit from gaze information.
The prototype system in [4] looked at methods for human-
computer collaborative image classification. In this paper,
we focus on object detection and annotation (Figure 1 sug-
gests potential benefits of such a system). Rather than ap-
plying object detectors at every location in an image arbi-
trarily, they could be more intelligently applied only at im-
portant locations as indicated by gaze fixations. This would
not only minimize the potential for false positives, but also
constrain the true positives to only the most user-relevant
content. It might also have implications for efficiency in
real-time detection scenarios.

Central to making these systems work is our belief that

humans and computers provide complimentary sources of
information for interpreting the content of images.

Humans can provide:

• Passive indications of content through gaze patterns.
These cues provide estimates about “where” important
things are, but not “what” they are.

• Active indications of content through descriptions.
These cues can directly inform questions of “what” is
in an image as well as indicating which parts of the
content are important to the viewer.

Computer vision recognition algorithms can provide:

• Automatic indications of content from recognition al-
gorithms. These algorithms can inform estimates of
“what” might be “where” in visual imagery, but will
always be noisy predictions and have no knowledge of
relative content importance.

It is our position that image understanding is ultimately
a human interpretation, making it essential that inputs from
humans be integrated with computational recognition meth-
ods. Attempts to solve this problem through analysis of pix-
els alone are unlikely to produce the kind of image under-
standing that is useful to humans, the ultimate consumers
of imagery. In order to build such a human-computational
collaborative system we first have to comprehend the rela-
tionship between these disparate modalities.

In this paper we describe several combined behavioral-
computational experiments aimed at exploring the relation-
ships between the pixels in an image, the eye movements
that people make while viewing that image, and the words
that they produce when asked to describe it. To the extent
that stable relationships can be discovered and quantified,
they can be integrated into image interpretation algorithms,
used to build better applications, and generally contribute
to basic scientific knowledge of how humans view and in-
terpret visual imagery. For these experiments we have col-
lected gaze fixations and some descriptions for images from
two commonly used computer vision datasets. Our data,
the SBU Gaze-Detection-Description Dataset, is available
at http://www.cs.stonybrook.edu/∼ial/gaze.html

2. Dataset & Experimental Settings
We investigate the relationships between eye move-

ments, description, image content, and computational
recognition algorithms using images from two standard
computer vision datasets, the Pascal VOC dataset [10] and
the SUN 2009 dataset [3].

PASCAL VOC: The PASCAL VOC is a visual recogni-
tion challenge widely known in the computer vision com-
munity for evaluating performance on object category de-
tection (among other tasks). We use 1,000 images from the
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2008 dataset [10], selected by Rashtchian et al [26] to con-
tain at least 50 images depicting each of the 20 object cat-
egories. For each object category, Felzenszwalb et al. [12]
provide a pre-trained deformable part model detector. For
each image, we also have 5 natural language descriptions
obtained by Rashtchian et al [26] using Amazon’s Mechan-
ical Turk (AMT) service. These descriptions generally de-
scribe the main image content (objects), relationships, and
sometimes the overall scene.

SUN09 Dataset: The second dataset we use is a subset
of the SUN09 dataset [3] of scene images with correspond-
ing hand labeled object segmentations. In our experiments
we use 104 images of 8 scene categories selected from the
SUN09 dataset, each having hand-labeled object segmen-
tations. We train 22 deformable part model object detec-
tors [12] using images with associated bounding boxes from
ImageNet [7]. These categories were selected to cover, as
much as possible, the main object content of our selected
scene images.

Experimental Settings

PASCAL VOC: On this dataset we explore short time-
frame viewing behavior. Each of 1,000 images is presented
for 3 seconds to 3 human observers. The observers’ task
is to freely view these images in anticipation of a memory
test. Eye movements were recorded during this time using
a remote eye tracker (EL1000) sampling at 1000 Hz. Im-
age descriptions were not collected from observers during
the experiment, as we wanted to examine the general re-
lationships between gaze and description that hold across
different people.

SUN09 Dataset: On this dataset we explore somewhat
longer timeframe viewing behavior. Each image is pre-
sented to 8 human observers for 5 seconds. Subjects are
instructed to freely view these images. After presentation
subjects are asked to describe the image they previously saw
and are given 20 seconds to provide an oral description. De-
scriptions are then manually transcribed to text. In addition,
we also collect text descriptions via AMT in a similar man-
ner to Rashtchian et al [26]. Figure 2 shows an example
gaze pattern and description.

3. Experiments & Analysis

In this section, we address several general questions re-
lating gaze, description, and image content. 1) What do
people look at? (Sec 3.1) 2) What do people describe?
(Sec 3.2), and 3) What is the relationship between what peo-
ple look at and what they describe? (Sec 3.3).

3.1. What do people look at?

Gaze vs Selected Objects: To determine whether the
objects we have selected for consideration (the 20 Pascal

What do subjects describe? 
A bedroom with mostly white uh pictures on the wall and 
a bed spread bright all in colors.  And it has a television 
and um a window seat. 

Where do subjects look? 
bed  pictures  curtains  night table 
painting  cushion  window  television 
wall  book     

What’s in this image? 
window, curtain, painting, wall, ceiling, remote control, 
bed, books, telephone, lamp, cushion, television, … 

Figure 2: Left: An example of a gaze pattern and descrip-
tion. Each dot indicates a fixation. Colors indicate earlier
(blue) to later (red) fixations. Right: A person’s description
of the image, together with the object ground truth and the
objects that were fixated. Red words indicate objects auto-
matically extracted from the sentence.

categories, and 22 classes from SUN09) represent the in-
teresting content of these images, we first need to validate
to what degree people actually look at these objects. For
example, Pascal was collected to depict certain objects for
evaluating detection algorithms, but it also contains other
unrelated objects. The SUN09 dataset has labels for almost
every object including background elements like floor, or
tiny objects like remote control, most of which we have not
selected for consideration in our experiments. Hence, we
first compute how many fixations fall into the image regions
corresponding to selected object categories. We find that
76.33% and 65.57% of fixations fall into selected object cat-
egory bounding boxes for the PASCAL and Sun09 datasets
respectively. Therefore, while these objects do reasonably
cover human fixation locations they do not represent all of
the fixated image content.

Gaze vs Object Type: Here we explore which objects
tend to attract the most human attention by computing the
rate of fixation for each category. We first study the per
image fixation rate for each category, that is, given an im-
age what is the rate at which each object category will be
fixated, NF (I, b):

F (I, b) =
# fixations in bounding box b

# fixations in image I
(1)

B(I, b) =
size of bounding box b

size of image I
(2)

NF (I, b) =
F (I, b)

B(I, b)
(3)

where F (I, b) indicates the percentage of fixations falling
into bounding box b in image I , and B(I, b) indicates the
ratio of the size of bounding box b to the whole image.
NF (I, b) denotes the normalized percentage of fixations of
bounding box b in image I .

Figure 3 shows the results. In the Pascal dataset peo-
ple preferentially look at animals like cow or dog, or (rela-
tively) unusual transportation devices like boats or airplanes



(a) PASCAL

(b) SUN09

Figure 3: (a) In the PASCAL dataset, given an image people
preferentially look at some object categories (dog, cat, per-
son) over others (chair, potted plant). (b) Similar patterns
can be seen in the SUN09 dataset.

over other common scene elements in an image like dining
tables, chairs, or potted plants. In the SUN dataset, people
are more likely to look at content elements like televisions
(if they are on), people, and ovens than objects like rugs or
cabinets.

We also study the overall fixation rate for each category
(results are shown in Figure 4). We evaluate this in two
ways, 1) by computing the average percentage of fixated in-
stances for each category (blue bars), and 2) by computing
the percentage of images where at least one instance of a
category was fixated when present (red bars). We calculate
the second measure because some images contain many in-
stances of a category, e.g. an image containing a number
of sheep. While viewers will probably not take the time to
look at every single sheep in the image, if sheep are impor-
tant then they are likely to look at at least one sheep in the
image. We find that while only 45% of all sheep in images
are fixated, at least one sheep is fixated in 97% of images
containing sheep. We also find that object categories like
person, cat, or dog are nearly always fixated on while more
common scene elements like curtains or potted plants are
fixated on much less frequently.

Gaze vs Location on Objects: Here we explore the
gaze patterns people produce for different object categories,
examining how the patterns vary across categories, and
whether bounding boxes are a reasonable representation for
object localization (as indicated by gaze patterns on ob-
jects). To analyze location information from fixations, we
first transform fixations into a density map. For a given im-
age, a two-dimensional Gaussian distribution that models
the human visual system with appropriately chosen param-
eters is centered at each fixation point. Specifically, sigma
was chosen by 7.0% of the image height – to be slightly
larger than fovea size. Then, a fixation density map is cal-
culated by summing the Gaussians over the entire image.
For each category, we average the fixation density maps

(a) PASCAL

(b) SUN09

Figure 4: Blue bars show the average percentage of fixated
instance per category. Red bars show the percentage of im-
ages where a category was fixated when present (at least
one fixated instance in an image).

(a) person (b) horse (c) tvmonitor

(d) bicycle (e) chair (f) diningtable

Figure 5: Examples of average fixation density maps. Fixa-
tion patterns tend to be category dependent.

over the ground truth bounding boxes to create an “aver-
age” fixation density map for that category. Figure 5 shows
how gaze patterns differ for example object categories. We
find that when people look at an animal such as a person
or horse (5a, 5b), they tend to look near the animal’s head.
For some categories such as bicycle or chair (5d, 5e), which
tend to have people sitting on them, we find that fixations
are pulled toward the top/middle of the bounding box. Sim-
ilarly, there are often objects resting on top of dining tables
(5f). For other categories like tv monitor (5c), people tend
to look at the center of the object. This observation suggest
that designing or training different gaze models for different
categories could potentially be useful for recognizing what
someone is looking at.

We also analyze the relationship between gaze, bound-
ing boxes, and object segmentations in the SUN09 dataset
which provides segmentations of all labeled objects. We
compute the percentage of fixations that fall into the true



All Person Chair Painting
% of area 68.41% 52.74% 57.51% 91.09%
% of fixations 68.97% 58.84% 59.14% 91.47%

Table 1: Comparison between segmentations and bounding
boxes. We measure what percentage of the bounding box
is part of the segmented object, and what percentage of the
human fixations in that bounding box fall in the segmented
object.

object segmentation compared to the entire bounding box
(results are shown in Table 1). We find that the percent-
age of fixations in the object segmentation compared to the
bounding is similar to their ratios in area, indicating that
while human gaze cues can help provide some rough local-
ization information, they will not necessarily be useful for
refining bounding box predictions to object segmentations.

3.2. What do people describe?

In this section we study what people describe in image
descriptions. To extract object words from descriptions, we
use a Part of Speech tagger [25] to tag nouns. We com-
pare the extracted nouns to our selected object categories
using WordNet distance [32] and keep nouns with small
WordNet distance. Since WordNet distance is not perfect,
we further manually correct the extracted word-object map-
pings. Experimentally, we find that 85.4% and 58.75% of
the ground truth objects are described in the PASCAL and
SUN09 datasets respectively. Since the depictions in the
SUN09 dataset are somewhat more complex and cluttered,
subjects are less likely to describe all selected objects all of
the time. Previous work has shown that object categories
are described preferentially [2]. For example, animate ob-
jects are much more likely to be described than inanimate
categories.

3.3. What is the relationship between gaze and de-
scription?

We examine the relationship between gaze and descrip-
tion by studying: 1) whether subjects look at the objects
they describe, and 2) whether subjects describe the objects
they look at. We quantify the relationship between spe-
cific gaze patterns and word choices for description by com-
puting the probability that someone will look at the de-
scribed objects, P (fixated | described) and the probability
that someone will describe the fixated objects, P (described
| fixated). Note that we look at these probabilities in two
different, but interesting scenarios: when the viewer and de-
scriber are the same individual (SUN09) and when they are
two different individuals (PASCAL) – to determine whether
relationships hold across people. Results are shown in Table
2. We find that there is a strong relationship between gaze
and description in both datasets. However, since the Pascal

P(fixated|described) P (described|fixated)
PASCAL 86.56% 95.22%
SUN09 73.67% 72.49%

Table 2: The relationship between human description and
fixation.

Figure 6: Fixation percentage versus detection score.
Scores in the top 10% (bin 10), top 10%-20% (bin 9), etc.
In the PASCAL dataset, for categories aeroplane, bus, cat,
cow, horse, motorbike, person, sofa, people tends to look
much more in the detection boxes with high scores. For
other categories, people tend to fixate evenly at detection
boxes.

dataset tends to contain cleaner and less cluttered images
than those in our SUN images, the correlation in PASCAL
is higher than in SUN09.

4. Gaze-Enabled Computer Vision
In this section, we discuss the implications of human

gaze as a potential signal for two computer vision tasks –
object detection and image annotation.

4.1. Analysis of human gaze with object detectors

We first examine correlations between the confidence of
visual detection systems and fixation. Positive or nega-
tive correlations give us insight into whether fixations have
the potential to improve detection performance. In this ex-
periment, we compute detection score versus fixation rate
(Equation 3). Results are shown in Fig 6. in general, we find
that observers look at bounding boxes with high confidence
scores more often, but that detections with lower confidence
scores are also sometimes fixated. As indicated by our pre-
vious studies, in general some categories are fixated more
often than others, suggesting that we might focus on inte-
grating gaze and computer vision predictions in a category
specific manner.

Given these observations, we also measure for what per-
centage of cases fixations could provide useful or detrimen-
tal evidence for object detection. In this experiment, we
select the bounding boxes output by the detectors at their
selected default thresholds. Results are shown in Fig 7 eval-
uating the following scenarios: 1) There is no predicted de-
tection box overlapping with the ground truth object (blue
bars). For these cases, gaze cannot possibly help to improve
the result, 2) There are both true positive (TP) and false pos-
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Figure 7: Analysis of where gaze could potentially decrease
(yellow), increase (pink), or not affect (green & blue) per-
formance of detection.

itive (FP) boxes overlapping with the ground truth. In some
of these cases there will be more fixations falling into a FP
box than into a TP. In these cases it is likely that adding gaze
information could hurt object detection performance (yel-
low bars). 3) In other cases, where we have more fixations
in a TP box than in any other FP box, gaze has the poten-
tial to improve object detection (pink bars). 4) Green bars
show detections where the object detector already provides
the correct answer and no FP boxes overlap with the ground
truth (therefore adding gaze will neither hurt nor help these
cases).

4.2. Object Detection

In this section, we employ simple methods for gaze-
enabled object detection, using deformable part models [12]
with detections predicted at their default thresholds. We
first consider the simplest possible algorithm – filter out all
detected bounding boxes that do not contain any fixations
(or conversely run object detectors only on parts of the im-
age containing fixations). This algorithm filters out many
false positive boxes, especially for detectors with lower per-
formance such as bottle, chair, plant, and person. At the
same time, it also removes a lot of true positive boxes for
objects that are less likely fixated such as bottle and plant,
resulting in improvements for some categories, but overall
decreased detection performance (Table 3 shows detection
performance on the 20 PASCAL categories).

Thus, we also propose a discriminative method where
we train classifiers to distinguish between true positive de-
tections and false positive detections output by the baseline
detectors. Features for classification include the detection
score and features computed from gaze. For gaze features,
we first create a fixation density map for each image (as
described in Section 3.1). To remove outliers, fixation den-
sity maps are weighted by fixation duration [13]. Then, we
compute the average fixation density map per image across
viewers. To compute gaze features of each detection box,
we calculate the average and the maximum of the fixation
density map inside of the detection box. Then, the final
gaze feature of each box is a three dimensional feature vec-

tor (eg. detection score, and the average and maximum of
the fixation density map).

For the PASCAL dataset, we split the 1,000 image
dataset equally into training and testing sets. Testing eval-
uation is performed as usual with the standard 0.5 overlap
required for true positives. However, for training, we also
consider bounding boxes with detection scores somewhat
lower than the default threshold for training our gaze classi-
fier and consider a more generous criterion (ie. Pascal over-
lap > 0.30) for positive samples so that we obtain enough
samples to train our classifier. On the other hand, a more
strict criterion (ie. Pascal overlap < 0.01) is applied for
negative samples. Then, we use hard-negative mining to it-
eratively add hard negatives (we use 3 iterations of negative
mining). Finally, we train 20 classifiers, one per object cat-
egory, using Support Vector Machines (SVMs) with RBF
Kernel, and set parameters with 5-fold cross validation.

Table 3 shows results for baseline detectors, our simple
filtering technique, and gaze-enabled classification. Gaze-
enabled classifiers outperform the baseline detectors for
some animal categories (eg. bird, cat, dog, and horse), train
and television, while performance decreases for the plane,
boat, car and cow. We generally find gaze helps improve
object detection on categories that are usually fixated while
it can hurt those that are not fixated (e.g. chair). Addi-
tionally, we observe some performance decrease due to de-
tector confusion. For example, the boat detector fires on
planes. Since people often look at planes, gaze-enabled
classifiers could increase this confusion. Although overall
performance (ie. the mean of average precision across cat-
egories) is not greatly increased, we believe gaze-enabled
algorithms could potentially be useful for many categories.

4.3. Annotation Prediction

We evaluate applicability of gaze to another end-user ap-
plication, image annotation – outputing a set of object tags
for an image. Here, we consider a successful annotation to
be one that matches the set of objects a person describes
when viewing the image. To transform detection to anno-
tation we output the unique set of categories detected in an
image. Using our simple filtering and gaze-enabled classifi-
cation methods (described in Sec 4.2), we find gaze to be a
useful cue for annotation. Overall, both simple filtering and
classification improve average annotation performance (Ta-
ble 4), and are especially helpful for those categories that
tend to draw fixations and description, e.g. bird, cat, dog,
tv. For inanimate or everyday object categories, e.g. bike,
table, sofa we do see some drop in performance, but not a
significant amount.

5. Conclusion and Future work
In this paper through a series of behavioral studies and

experimental evaluations, we explored the information con-



aero bike bird boat bottle bus car cat chair cow
baseline detection 63.6 61.7 38.2 44.1 27.9 55.0 50.8 42.9 30.3 66.6
simple filtering 63.6 62.5 39.7 38.8 15.2 55.3 41.9 44.1 24.6 67.4
gaze-enabled detection 60.4 61.1 40.9 42.2 27.8 55.5 49.4 47.1 29.6 64.8

table dog horse mbike person plant sheep sofa train tv
baseline detection 78.7 65.7 65.7 63.3 43.9 32.7 45.3 82.2 72.7 72.5
simple filtering 79.3 67.5 63.8 60.2 40.6 16.6 38.5 82.6 73.9 70.4
gaze-enabled detection 78.5 66.3 66.1 63.1 43.6 32.9 45.0 83.4 75.2 73.4

overall
(mAP)
55.2
52.3
55.3

Table 3: Average precision of detection in the PASCAL dataset

aero bike bird boat bottle bus car cat chair cow
baseline detection 67.6 75.8 42.6 57.1 49.3 74.9 71.4 44.8 49.2 84.9
simple filtering 67.6 76.8 44.8 51.9 51.8 75.1 76.1 46.1 48.6 85.4
gaze-enabled detection 66.4 72.9 47.2 55.0 49.5 75.2 72.7 49.1 50.3 85.2

table dog horse mbike person plant sheep sofa train tv
baseline detection 76.3 66.2 85.9 81.9 64.5 39.8 63.3 73.0 82.9 68.7
simple filtering 76.9 67.9 86.2 82.3 65.1 41.1 63.5 73.3 84.5 71.0
gaze-enabled detection 76.3 67.9 87.1 82.6 65.6 38.6 63.8 72.9 85.1 74.1

overall
(mAP)
66.0
66.8
66.9

Table 4: Average precision of annotation prediction in the PASCAL dataset

tained in eye movements and description and analyzed their
relationship with image content. We also examined the
complex relationships between human gaze and outputs of
current visual detection methods. In future work, we will
study the relationship between temporal order of narrative
decryption and the temporal order of fixations. Moreover,
we will build on this work in the development of more in-
telligent human-computer interactive systems for image un-
derstanding.
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