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Abstract

We address the problem of end-to-end vi-
sual storytelling. Given a photo album, our
model first selects the most representative
(summary) photos, and then composes a
natural language story for the album. For
this task, we make use of the Visual Sto-
rytelling dataset and a model composed
of three hierarchically-attentive Recurrent
Neural Nets (RNNs) to: encode the album
photos, select representative (summary)
photos, and compose the story. Automatic
and human evaluations show our model
achieves better performance on selection,
generation, and retrieval than baselines.

1 Introduction
Since we first developed language, humans have
always told stories. Fashioning a good story is
an act of creativity and developing algorithms to
replicate this has been a long running challenge.
Adding pictures as input can provide information
for guiding story construction by offering visual
illustrations of the storyline. In the related task
of image captioning, most methods try to generate
descriptions only for individual images or for short
videos depicting a single activity. Very recently,
datasets have been introduced that extend this task
to longer temporal sequences such as movies or
photo albums (Rohrbach et al., 2016; Pan et al.,
2016; Lu and Grauman, 2013; Huang et al., 2016).

The type of data we consider in this paper pro-
vides input illustrations for story generation in the
form of photo albums, sampled over a few minutes
to a few days of time. For this type of data, gen-
erating textual descriptions involves telling a tem-
porally consistent story about the depicted visual
information, where stories must be coherent and
take into account the temporal context of the im-

ages. Applications of this include constructing vi-
sual and textual summaries of albums, or even en-
abling search through personal photo collections
to find photos of life events.

Previous visual storytelling works can be clas-
sified into two types, vision-based and language-
based, where image or language stories are con-
structed respectively. Among the vision-based ap-
proaches, unsupervised learning is commonly ap-
plied: e.g., (Sigurdsson et al., 2016) learns the la-
tent temporal dynamics given a large amount of
albums, and (Kim and Xing, 2014) formulate the
photo selection as a sparse time-varying directed
graph. However, these visual summaries tend to
be difficult to evaluate and selected photos may
not agree with human selections. For language-
based approaches, a sequence of natural language
sentences are generated to describe a set of pho-
tos. To drive this work (Park and Kim, 2015) col-
lected a dataset mined from Blog Posts. However,
this kind of data often contains contextual infor-
mation or loosely related language. A more direct
dataset was recently released (Huang et al., 2016),
where multi-sentence stories are collected describ-
ing photo albums via Amazon Mechanical Turk.

In this paper, we make use of the Visual Sto-
rytelling Dataset (Huang et al., 2016). While
the authors provide a seq2seq baseline, they only
deal with the task of generating stories given 5-
representative (summary) photos hand-selected by
people from an album. Instead, we focus on the
more challenging and realistic problem of end-to-
end generation of stories from entire albums. This
requires us to either generate a story from all of the
album’s photos or to learn selection mechanisms
to identify representative photos and then generate
stories from those summary photos. We evaluate
each type of approach.

Ultimately, we propose a model of
hierarchically-attentive recurrent neural nets,



consisting of three RNN stages. The first RNN
encodes the whole album context and each photo’s
content, the second RNN provides weights for
photo selection, and the third RNN takes the
weighted representation and decodes to the
resulting sentences. Note that during training, we
are only given the full input albums and the output
stories, and our model needs to learn the summary
photo selections latently.

We show that our model achieves better perfor-
mance over baselines under both automatic met-
rics and human evaluations. As a side product, we
show that the latent photo selection also reason-
ably mimics human selections. Additionally, we
propose an album retrieval task that can reliably
pick the correct photo album given a sequence of
sentences, and find that our model also outper-
forms the baselines on this task.

2 Related work
Recent years have witnessed an explosion of inter-
est in vision and language tasks, reviewed below.
Visual Captioning: Most recent approaches to
image captioning (Vinyals et al., 2015b; Xu et al.,
2015) have used CNN-LSTM structures to gener-
ate descriptions. For captioning video or movie
content (Venugopalan et al., 2015; Pan et al.,
2016), sequence-to-sequence models are widely
applied, where the first sequence encodes video
frames and the second sequence decodes the de-
scription. Attention techniques (Xu et al., 2015;
Yu et al., 2016; Yao et al., 2015) are commonly
incorporated for both tasks to localize salient tem-
poral or spatial information.
Video Summarization: Similar to documenta-
tion summarization (Rush et al., 2015; Cheng and
Lapata, 2016; Mei et al., 2016; Woodsend and
Lapata, 2010) which extracts key sentences and
words, video summarization selects key frames or
shots. While some approaches use unsupervised
learning (Lu and Grauman, 2013; Khosla et al.,
2013) or intuitive criteria to pick salient frames,
recent models learn from human-created sum-
maries (Gygli et al., 2015; Zhang et al., 2016b,a;
Gong et al., 2014). Recently, to better exploit
semantics, (Choi et al., 2017) proposed textually
customized summaries.
Visual Storytelling: Visual storytelling tries to
tell a coherent visual or textual story about an
image set. Previous works include storyline
graph modeling (Kim and Xing, 2014), unsuper-
vised mining (Sigurdsson et al., 2016), blog-photo

alignment (Kim et al., 2015), and language re-
telling (Huang et al., 2016; Park and Kim, 2015).
While (Park and Kim, 2015) collects data by min-
ing Blog Posts, (Huang et al., 2016) collects sto-
ries using Mechanical Turk, providing more di-
rectly relevant stories.

3 Model
Our model (Fig. 1) is composed of three modules:
Album Encoder, Photo Selector, and Story Gener-
ator, jointly learned during training.

3.1 Album Encoder
Given an album A = {a1, a2, ..., an}, com-
posed of a set of photos, we use a bi-directional
RNN to encode the local album context for each
photo. We first extract the 2048-dimensional vi-
sual representation fi ∈ Rk for each photo using
ResNet101 (He et al., 2016), then a bi-directional
RNN is applied to encode the full album. Fol-
lowing (Huang et al., 2016), we choose a Gated
Recurrent Unit (GRU) as the RNN unit to encode
the photo sequence. The sequence output at each
time step encodes the local album context for each
photo (from both directions). Fused with the vi-
sual representation followed by ReLU, our final
photo representation is (top module in Fig. 1):

fi = ResNet(ai)
~hi = ~GRUalbum(fi,~hi−1)

~hi = ~GRUalbum(fi, ~hi+1)

vi = ReLU([~hi, ~hi] + fi).

3.2 Photo Selector
The Photo Selector (illustrated in the middle yel-
low part of Fig. 1) identifies representative pho-
tos to summarize an album’s content. As dis-
cussed, we do not assume that we are given the
ground-truth album summaries during training, in-
stead regarding selection as a latent variable in
the end-to-end learning. Inspired by Pointer Net-
works (Vinyals et al., 2015a), we use another
GRU-RNN to perform this task 1.

Given the album representation V n×k, the
photo selector outputs probabilities pt ∈ Rn (like-
lihood of selection as t-th summary image) for all
photos using soft attention.

h̄t = GRUselect(pt−1, h̄t−1),

p(yai(t) = 1) = σ(MLP([h̄t, vi])),

1While the pointer network requires grounding labels, we
regard the labels as latent variables



Figure 1: Model: the album encoder is a bi-directional GRU-RNN that encodes all album photos; the
photo selector computes the probability of each photo being the tth album-summary photo; and finally,
the story generator outputs a sequence of sentences that combine to tell a story for the album.

At each summarization step, t, the GRU takes the
previous pt−1 and previous hidden state as input,
and outputs the next hidden state h̄t. h̄t is fused
with each photo representation vi to compute the
ith photo’s attention pit = p(yai(t) = 1). At test
time, we simply pick the photo with the highest
probability to be the summary photo at step t.

3.3 Story Generator
To generate an album’s story, given the album rep-
resentation matrix V and photo summary proba-
bilities pt from the first two modules, we compute
the visual summary representation gt ∈ Rk (for
the t-th summary step). This is a weighted sum of
the album representations, i.e., gt = pTt V . Each of
these 5 gt embeddings (for t = 1 to 5) is then used
to decode 1 of the 5 story sentences respectively,
as shown in the blue part of Fig. 1.

Given a story S = {st}, where st is t-th sum-
mary sentence. Following Donahue et al. (2015),
the l-th word probability of the t-th sentence is:

wt,l−1 = West,l−1,

h̃t,l = GRUstory(wt,l−1, gt, h̃t,l−1),

p(st,l) = softmax(MLP(h̃t,l)),

(1)

where We is the word embedding. The GRU
takes the joint input of visual summarization gt,
the previous word embedding wt,l, and the pre-
vious hidden state, then outputs the next hidden
state. The generation loss is then the sum of
the negative log likelihoods of the correct words:
Lgen(S) = −

∑T
t=1

∑Lt
l=1 log pt,l(st,l).

To further exploit the notion of temporal coher-
ence in a story, we add an order-preserving con-

straint to order the sequence of sentences within a
story (related to the story-sorting idea in Agrawal
et al. (2016)). For each story S we randomly shuf-
fle its 5 sentences to generate negative story in-
stances S′. We then apply a max-margin rank-
ing loss to encourage correctly-ordered stories:
Lrank(S, S′) = max(0,m−log p(S′)+log p(S)).
The final loss is then a combination of the genera-
tion and ranking losses:

L = Lgen(S) + λLrank(S, S′). (2)

4 Experiments

We use the Visual Storytelling Dataset (Huang
et al., 2016), consisting of 10,000 albums with
200,000 photos. Each album contains 10-50 pho-
tos taken within a 48-hour span with two anno-
tations: 1) 2 album summarizations, each with 5
selected representative photos, and 2) 5 stories de-
scribing the selected photos.

4.1 Story Generation

This task is to generate a 5-sentence story describ-
ing an album. We compare our model with two
sequence-to-sequence baselines: 1) an encoder-
decoder model (enc-dec), where the sequence of
album photos is encoded and the last hidden state
is fed into the decoder for story generation, 2)
an encoder-attention-decoder model (Xu et al.,
2015) (enc-attn-dec) with weights computed us-
ing a soft-attention mechanism. At each decoding
time step, a weighted sum of hidden states from
the encoder is decoded. For fair comparison, we



beam size=3
Bleu3 Rouge Meteor CIDEr

enc-dec 19.58 29.23 33.02 4.65
enc-attn-dec 19.73 28.94 32.98 4.96
h-attn 20.53 29.82 33.81 6.84
h-attn-rank 20.78 29.82 33.94 7.38
h-(gd)attn-rank 21.02 29.53 34.12 7.51

Table 1: Story generation evaluation.

enc-dec (29.50%) h-attn-rank (70.50%)
enc-attn-dec (30.75%) h-attn-rank (69.25%)
h-attn-rank (30.50%) gd-truth (69.50%)

Table 2: Human evaluation showing how often
people prefer one model over the other.

use the same album representation (Sec. 3.1) for
the baselines.

We test two variants of our model trained with
and without ranking regularization by controlling
λ in our loss function, denoted as h-attn (without
ranking), and h-attn-rank (with ranking). Eval-
uations of each model are shown in Table 1.
The h-attn outperforms both baselines, and h-attn-
rank achieves the best performance for all met-
rics. Note, we use beam-search with beam size=3
during generation for a reasonable performance-
speed trade-off (we observe similar improvement
trends with beam size = 1).2 To test performance
under optimal image selection, we use one of the
two ground-truth human-selected 5-photo-sets as
an oracle to hard-code the photo selection, denoted
as h-(gd)attn-rank. This achieves only a slightly
higher Meteor compared to our end-to-end model.

Additionally, we also run human evaluations in
a forced-choice task where people choose between
stories generated by different methods. For this
evaluation, we select 400 albums, each evaluated
by 3 Turkers. Results are shown in Table 2. Exper-
iments find significant preference for our model
over both baselines. As a simple Turing test, we
also compare our results with human written sto-
ries (last row of Table 2), indicating room for im-
provement of methods.

4.2 Album Summarization

We evaluate the precision and recall of our gen-
erated summaries (output by the photo selector)
compared to human selections (the combined set

2We also compute the p-value of Meteor on 100K sam-
ples via the bootstrap test (Efron and Tibshirani, 1994), as
Meteor has better agreement with human judgments than
Bleu/Rouge (Huang et al., 2016). Our h-attn-rank model has
strong statistical significance (p = 0.01) over the enc-dec and
enc-attn-dec models (and is similar to the h-attn model).

precision recall
DPP 43.75% 27.41%
enc-attn-dec 38.53% 24.25%
h-attn 42.85% 27.10%
h-attn-rank 45.51% 28.77%

Table 3: Album summarization evaluation.

R@1 R@5 R@10 MedR
enc-dec 10.70% 29.30% 41.40% 14.5
enc-attn-dec 11.60% 33.00% 45.50% 11.0
h-attn 18.30% 44.50% 57.60% 6.0
h-attn-rank 18.40% 43.30% 55.50% 7.0

Table 4: 1000 album retrieval evaluation.

of both human-selected 5-photo stories). For com-
parison, we evaluate enc-attn-dec on the same task
by aggregating predicted attention and selecting
the 5 photos with highest accumulated attention.
Additionally, we also run DPP-based video sum-
marization (Kulesza et al., 2012) using the same
album features. Our models have higher perfor-
mance compared to baselines as shown in Table 3
(though DPP also achieves strong results, indicat-
ing that there is still room to improve the pointer
network).

4.3 Output Example Analysis

Fig. 2 shows several output examples for both
summarization and story generation, comparing
our model to the baseline and ground-truth. More
examples are provided in the supplementary.

4.4 Album Retrieval

Given a human-written story, we introduce a task
to retrieve the album described by that story. We
randomly select 1000 albums and one ground-
truth story from each for evaluation. Using the
generation loss, we compute the likelihood of each
album Am given the query story S and retrieve
the album with the highest generation likelihood,
A = argmaxAm

p(S|Am). We use Recall@k and
Median Rank for evaluation. As shown in Ta-
ble 4), we find that our models outperform the
baselines, but the ranking term in Eqn.2 does not
improve performance significantly.

5 Conclusion

Our proposed hierarchically-attentive RNN based
models for end-to-end visual storytelling can
jointly summarize and generate relevant stories
from full input photo albums effectively. Au-
tomatic and human evaluations show that our
method outperforms strong sequence-to-sequence



Figure 2: Examples of album summarization and storytelling by enc-attn-dec (blue), h-attn-rank (red),
and ground-truth (green). We randomly select 1 out of 2 human album summaries as ground-truth here.

baselines on selection, generation, and retrieval
tasks.
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