Advanced Multimedia

Images, cameras & color
Today: Images, Cameras & Color

Photo credit: amateur_photo_bore
How do we see the world?

• Let’s design a camera
 – Idea 1: put a piece of film in front of an object
 – Do we get a reasonable image?
Pinhole camera

- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the aperture
Pinhole camera model

- Pinhole model:
 - Captures **pencil of rays** – all rays through a single point
 - The point is called **Center of Projection (focal point)**
 - The image is formed on the **Image Plane**
Camera Obscursa
Camera Obscura, Gemma Frisius, 1558

• The first camera
 – Known to Aristotle
Abelardo Morell

After scouting rooms and reserving one for at least a day, Morell masks the windows except for the aperture. He controls three elements: the size of the hole, with a smaller one yielding a sharper but dimmer image; the length of the exposure, usually eight hours; and the distance from the hole to the surface on which the outside image falls and which he will photograph. He used 4 x 5 and 8 x 10 view cameras and lenses ranging from 75 to 150 mm.

After he’s done inside, it gets harder. “I leave the room and I am constantly checking the weather, I’m hoping the maid reads my note not to come in, I’m worrying that the sun will hit the plastic masking and it will fall down, or that I didn’t trigger the lens.”

From Grand Images Through a Tiny Opening, Photo District News, February 2005

- Camera Obscura Image of Manhattan View Looking South in Large Room, 1996

http://www.abelardomorell.net/camera_obscura1.html
Dimensionality Reduction Machine (3D to 2D)

What have we lost?

- Angles
- Distances (lengths)
Funny things happen...

- Parallel lines converge at a vanishing point
 - Each direction in space has its own vanishing point
 - But parallels parallel to the image plane remain parallel
Funny things happen...

- Parallel lines converge at a vanishing point
 - Each direction in space has its own vanishing point
 - But parallels parallel to the image plane remain parallel

How do we construct the vanishing point/line?
Lengths can’t be trusted...
...but humans adopt!

Müller-Lyer Illusion

Slide by Alyosha Efros

http://www.michaelbach.de/ot/sze_muelue/index.html
Perspective distortion

• Problem for architectural photography: converging verticals

Source: F. Durand
Perspective distortion

• Problem for architectural photography: converging verticals

Tilting the camera upwards results in converging verticals

Keeping the camera level, captures only the bottom portion of the building

Shifting the aperture upwards results in a picture of the entire subject

• Solution: view camera (aperture shifted w.r.t. film)

http://en.wikipedia.org/wiki/Perspective_correction_lens

Source: F. Durand
Perspective distortion

• Problem for architectural photography: converging verticals

• Result:
Perspective distortion

- However, converging verticals work quite well for horror movies...
• Pinhole model:
 – Captures **pencil of rays** – all rays through a single point
 – The point is called **Center of Projection (focal point)**
 – The image is formed on the **Image Plane**
Modeling projection

• The coordinate system
 – We will use the pin-hole model as an approximation
 – Put the optical center (Center Of Projection) at the origin
 – Put the image plane (Projection Plane) in front of the COP
 Why?
Modeling projection

- **Projection equations**
 - Compute intersection with PP of ray from \((x,y,z)\) to COP
 - Derived using similar triangles

\[
(x, y, z) \rightarrow (-d \frac{x}{z}, -d \frac{y}{z}, -d)
\]

- We get the projection by throwing out the last coordinate:

\[
(x, y, z) \rightarrow (-d \frac{x}{z}, -d \frac{y}{z})
\]
Homogeneous coordinates

Trick: add one more coordinate:

\[
(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}
\]

homogeneous image coordinates

\[
(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]

homogeneous scene coordinates

Converting *from* homogeneous coordinates

\[
\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow \left(\frac{x}{w}, \frac{y}{w}\right)
\]

\[
\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow \left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right)
\]
Perspective Projection

• Projection is a matrix multiply using homogeneous coordinates:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1/d & 0 \\
0 & 0 & -1/d & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix} =
\begin{bmatrix}
x \\
y \\
z/d \\
1
\end{bmatrix} \Rightarrow \left(-d\frac{x}{z}, \ -d\frac{y}{z} \right)
\]

divide by third coordinate

This is known as **perspective projection**

• The matrix is the **projection matrix**
Building a real camera
Home-made pinhole camera

Why so blurry?

http://www.debevec.org/Pinhole/
Shrinking the aperture

• Why not make the aperture as small as possible?
 – Less light gets through
 – Diffraction effects...
Shrinking the aperture

2 mm

1 mm

0.6 mm

0.35 mm

0.15 mm

0.07 mm
The reason for lenses
Focus
Adding a lens

- A lens focuses light onto the film
Focus

When you turn the lens of a camera to focus it -- you're moving it closer or farther away from the film surface. As you move the lens, you can line up the focused real image of an object so it falls directly on the film surface.
Adding a lens

• A lens focuses light onto the film
 – Rays passing through the center are not deviated
 – All parallel rays converge to one point on a plane located at the focal length f
Adding a lens

- A lens focuses light onto the film
 - There is a specific distance at which objects are “in focus”
 - other points project to a “circle of confusion” in the image
Thin lens formula
Thin lens formula

Similar triangles everywhere!
Thin lens formula

\[
y' / y = D' / D
\]

Similar triangles everywhere!
Thin lens formula

\[\frac{y'}{y} = \frac{D'}{D} \]

\[\frac{y'}{y} = \frac{(D' - f)}{f} \]

Similar triangles everywhere!
Thin lens formula

\[\frac{1}{D'} + \frac{1}{D} = \frac{1}{f} \]

Any point satisfying the thin lens equation is in focus.
Varying Focus
Depth Of Field
Depth of Field

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm
Aperture affects Depth of Field

- Changing the aperture size affects depth of field
 - A smaller aperture increases the range in which the object is approximately in focus
 - But small aperture reduces amount of light – need to increase exposure
Varying the aperture

Large aperture = small DOF

Small aperture = large DOF
Nice Depth of Field effect
Field of View (Zoom)
Field of View (Zoom)

From London and Upton
Field of View (Zoom)
FOV depends on Focal Length

\[\varphi = \tan^{-1}\left(\frac{d}{2f}\right) \]

Smaller FOV = larger Focal Length
From Zisserman & Hartley
Field of View / Focal Length

Large FOV, small f
Camera close to car

Small FOV, large f
Camera far from the car

Sources: A. Efros, F. Durand
Same effect for faces

wide-angle
standard
telephoto

Source: F. Durand
Lens Flaws
Lens Flaws: Chromatic Aberration

- Lens has different refractive indices for different wavelengths: causes color fringing

![Diagram showing color fringing near lens center and outer edge.](source: L Lazebnik)
Lens flaws: Spherical aberration

• Spherical lenses don’t focus light perfectly
• Rays farther from the optical axis focus closer
Lens flaws: Vignetting

Source: L Lazebnik
Digital camera

- A digital camera replaces film with a sensor array
 - Each cell in the array is light-sensitive diode that converts photons to electrons
 - Two common types
 - Charge Coupled Device (CCD)
 - Complementary metal oxide semiconductor (CMOS)
Sampling and Quantization

FIGURE 2.16 Generating a digital image: (a) Continuous image, (b) A scan line from A to B in the continuous image, used to illustrate the concepts of sampling and quantization, (c) Sampling and quantization, (d) Digital scan line.

Source: A Efros
CCD vs. CMOS

- **CCD:** transports the charge across the chip and reads it at one corner of the array. An analog-to-digital converter (ADC) then turns each pixel's value into a digital value by measuring the amount of charge at each photosite and converting that measurement to binary form.

- **CMOS:** uses several transistors at each pixel to amplify and move the charge using more traditional wires. The CMOS signal is digital, so it needs no ADC.

CCDs move photogenerated charge from pixel to pixel and convert it to voltage at an output node. CMOS imagers convert charge to voltage inside each pixel.

Source: A Efros
Issues with digital cameras

• Noise
 • low light is where you most notice noise
 • light sensitivity (ISO) / noise tradeoff
 • stuck pixels

• Resolution: Are more megapixels better?
 • requires higher quality lens
 • noise issues

• In-camera processing
 • oversharpening can produce halos

• RAW vs. compressed
 • file size vs. quality tradeoff

• Blooming
 • charge overflowing into neighboring pixels

• Color artifacts
 • purple fringing from microlenses, artifacts from Bayer patterns
 • white balance

• More info online:
 – http://www.dpreview.com/
Historical context

- **Pinhole model:** Mozi (470-390 BCE), Aristotle (384-322 BCE)
- **Principles of optics (including lenses):** Alhacen (965-1039 CE)
- **Camera obscura:** Leonardo da Vinci (1452-1519), Johann Zahn (1631-1707)
- **First photo:** Joseph Nicephore Niepce (1822)
- **Daguerreotypes** (1839)
- **Photographic film** (Eastman, 1889)
- **Cinema** (Lumière Brothers, 1895)
- **Color Photography** (Lumière Brothers, 1908)
- **Television** (Baird, Farnsworth, Zworykin, 1920s)
- **First consumer camera with CCD:** Sony Mavica (1981)
- **First fully digital camera:** Kodak DCS100 (1990)
• The human eye is a camera!
 – **Iris** - colored annulus with radial muscles
 – **Pupil** - the hole (aperture) whose size is controlled by the iris
 – What’s the “film”?
 – photoreceptor cells (rods and cones) in the **retina**
The Retina

Cross-section of eye

Cross section of retina

- Ganglion axons
- Ganglion cell layer
- Bipolar cell layer
- Receptor layer
- Pigmented epithelium

Source: A Efros
Retina up-close
Two types of light-sensitive receptors

Cones
- cone-shaped
- less sensitive
- operate in high light
- color vision

Rods
- rod-shaped
- highly sensitive
- operate at night
- gray-scale vision
Rod / Cone sensitivity

The famous sock-matching problem...

Source: A Efros
Night Sky: why are there more stars off-center?

Source: A Efros
Electromagnetic Spectrum

Human Luminance Sensitivity Function
Why do we see light of these wavelengths?

...because that's where the Sun radiates EM energy

Visible Light
Any patch of light can be completely described physically by its spectrum: the number of photons (per time unit) at each wavelength 400 - 700 nm.
The Physics of Light

Some examples of the spectra of light sources

A. Ruby Laser

B. Gallium Phosphide Crystal

C. Tungsten Lightbulb

D. Normal Daylight

© Stephen E. Palmer, 2002
The color of objects

- Colored light arriving at the camera involves two effects
 - The color of the light source
 - The color of the surface
 - Changes caused by different colored light sources can be large

\[
\int_{\lambda} \sigma(\lambda) \rho(\lambda) E(\lambda) d\lambda
\]
The Physics of Light

Some examples of the **reflectance** spectra of **surfaces**

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>% Photons Reflected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>400 700</td>
</tr>
<tr>
<td>Yellow</td>
<td>400 700</td>
</tr>
<tr>
<td>Blue</td>
<td>400 700</td>
</tr>
<tr>
<td>Purple</td>
<td>400 700</td>
</tr>
</tbody>
</table>

© Stephen E. Palmer, 2002

Source: A Efros
The Psychophysical Correspondence

There is no simple functional description for the perceived color of all lights under all viewing conditions, but ……

A helpful constraint:
Consider only physical spectra with normal distributions

Source: A Efros
The Psychophysical Correspondence

Mean ↔ Hue

Photons

Wavelength

blue green yellow

© Stephen E. Palmer, 2002

Source: A Efros
The Psychophysical Correspondence

Variance ↔ Saturation

Photons

Wavelength

Source: A Efros
The Psychophysical Correspondence

Area ↔ Brightness

Photons

Wavelength

Source: A Efros
Three kinds of cones:

- S (short-wavelength sensitive)
- M (medium-wavelength sensitive)
- L (long-wavelength sensitive)

Wavelength (nm):
- S: 440 nm
- M: 530 nm
- L: 560 nm

Source: A Efros
Color Adaptation

keep staring at the black dot.
Color Sensing in Camera (RGB)

- 3-chip vs. 1-chip: quality vs. cost

Why 3 colors?

http://www.cooldictionary.com/words/Bayer-filter.wikipedia
Color Sensing in Camera (RGB)

- 3-chip vs. 1-chip: quality vs. cost
- Why more green?

Why 3 colors?

http://www.cooldictionary.com/words/Bayer-filter.wikipedia
Color Sensing in Camera (RGB)

- 3-chip vs. 1-chip: quality vs. cost
- Why more green?

Why 3 colors?

http://www.cooldictionary.com/words/Bayer-filter.wikipedia

Slide by Steve Seitz
RGB color space

• RGB cube
 – Easy for devices
 – But not perceptual
 – Where do the grays live?
 – Where is hue and saturation?
• Hue, Saturation, Value (Intensity/Brightness)
• Use rgb2hsv() and hsv2rgb() in Matlab